Benutzer: Gast  Login
Titel:

Time Series Modeling and Forecasting of Epidemic Spreading Processes using Deep Transfer Learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Xue, Dong; Wang, Ming; Liu, Fangzhou; Buss, Martin
Abstract:
Traditional data-driven methods for modeling and predicting epidemic spreading typically operate in an independent and identically distributed setting. However, epidemic spreading on complex networks exhibits significant heterogeneity across different phases, regions, and viruses, indicating that epidemic time series may not be independent and identically distributed due to temporal and spatial variations. In this article, a novel deep transfer learning method integrating convolutional neural ne...     »
Zeitschriftentitel:
Chaos, Solitons & Fractals
Jahr:
2024
Band / Volume:
185
Jahr / Monat:
2024-08
Monat:
Aug
Seitenangaben Beitrag:
115092
Reviewed:
ja
Sprache:
en
Verlag / Institution:
Pergamon
Publikationsdatum:
01.08.2024
Semester:
SS 24
 BibTeX