Benutzer: Gast  Login
Titel:

ActiveAnno3D - An Active Learning Framework for Multi-Modal 3D Object Detection

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Ghita, Ahmed; Antoniussen, Bjørk; Zimmer, Walter; Greer, Ross; Creß, Christian; Møgelmose, Andreas; Trivedi, Mohan M.; Knoll, Alois C.
Abstract:
The curation of large-scale datasets is still costly and requires much time and resources. Data is often manually labeled, and the challenge of creating high-quality datasets remains. In this work, we fill the research gap using active learning for multi-modal 3D object detection. We propose ActiveAnno3D, an active learning framework to select data samples for labeling that are of maximum informativeness for training. We explore various continuous training methods and integrate the most efficien...     »
Dewey Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Zeitschriftentitel:
IEEE Proceedings of Intelligent Vehicles Symposium 2024
Jahr:
2024
Jahr / Monat:
2024-07
Quartal:
3. Quartal
Monat:
Jul
Seitenangaben Beitrag:
8
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1109/IV55156.2024.10588452
WWW:
https://ieeexplore.ieee.org/document/10588452
Verlag / Institution:
IEEE
Status:
Erstveröffentlichung
Publikationsdatum:
15.07.2024
Copyright Informationen:
IEEE
TUM Einrichtung:
Chair of Robotics, Artificial Intelligence and Real-time Systems
Format:
Text
 BibTeX