With the increasing demand for humans and robots to collaborate in a joint workspace, it is essential that robots react and adapt instantaneously to unforeseen events to ensure safety. Constraining robot dynamics directly on SE(3), that is, the group of 3D translation and rotation, is essential to comply with the emerging Human–Robot Collaboration (HRC) safety standard ISO/TS 15066. We argue that limiting coordinate-independent magnitudes of physical dynamic quantities at the same time allows more intuitive constraint definitions. We present the first real-time capable online trajectory generator that constrains translational and rotational magnitude values of 3D translation and 3D rotation dynamics in a singularity-free formulation. Simulations as well as experiments on a hardware platform show the utility in HRC contexts.
«
With the increasing demand for humans and robots to collaborate in a joint workspace, it is essential that robots react and adapt instantaneously to unforeseen events to ensure safety. Constraining robot dynamics directly on SE(3), that is, the group of 3D translation and rotation, is essential to comply with the emerging Human–Robot Collaboration (HRC) safety standard ISO/TS 15066. We argue that limiting coordinate-independent magnitudes of physical dynamic quantities at the same time allow...
»