Giving robots the ability to classify surface textures requires appropriate sensors and algorithms. Inspired by the biology of human tactile perception, we implement a neurorobotic texture classifier with a recurrent spiking neural network, using a novel semi-supervised approach for classifying dynamic stimuli. Input to the network is supplied by accelerometers mounted on a robotic arm. The sensor data is encoded by a heterogeneous population of neurons, modeled to match the spiking activity of mechanoreceptor cells. This activity is convolved by a hidden layer using bandpass filters to extract nonlinear frequency information from the spike trains. The resulting high-dimensional feature representation is then continuously classified using a neurally implemented support vector machine. We demonstrate that our system classifies 18 metal surface textures scanned in two opposite directions at a constant velocity. We also demonstrate that our approach significantly improves upon a baseline model that does not use the described feature extraction. This method can be performed in real-time using neuromorphic hardware, and can be extended to other applications that process dynamic stimuli online.
«
Giving robots the ability to classify surface textures requires appropriate sensors and algorithms. Inspired by the biology of human tactile perception, we implement a neurorobotic texture classifier with a recurrent spiking neural network, using a novel semi-supervised approach for classifying dynamic stimuli. Input to the network is supplied by accelerometers mounted on a robotic arm. The sensor data is encoded by a heterogeneous population of neurons, modeled to match the spiking activity of...
»