Benutzer: Gast  Login
Titel:

TUMTraf V2X Cooperative Perception Dataset - Supplementary Material

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Zimmer, Walter; Wardana, Gerhard Arya; Sritharan, Suren; Zhou, Xingcheng; Song, Rui; Knoll, Alois C.
Seitenangaben Beitrag:
13
Abstract:
Cooperative perception offers several benefits for enhancing the capabilities of autonomous vehicles and improving road safety. Using roadside sensors in addition to onboard sensors increases reliability and extends the sensor range. They offer a higher situational awareness for automated vehicles and prevent occlusions. We propose CoopDet3D, a cooperative multi-modal fusion model, and TUMTraf-V2X, a perception dataset, for the cooperative 3D object detection and tracking task. Our dataset conta...     »
Stichworte:
V2X, Cooperative Perception, 3D Object Detection, Autonomous Driving, Roadside Sensors, Intelligent Transportation Systems, Dataset, Traffic Monitoring
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Herausgeber:
IEEE/CVF
Kongress- / Buchtitel:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Ausrichter der Konferenz:
IEEE/CVF
Datum der Konferenz:
17 - 21 July 2024
Verlag / Institution:
IEEE/CVF
Jahr:
2024
Jahr / Monat:
2024-06
Monat:
Jun
Seiten:
13
Reviewed:
ja
Sprache:
en
Erscheinungsform:
WWW
Volltext / DOI:
doi:https://doi.org/10.48550/arXiv.2403.01316
WWW:
https://openaccess.thecvf.com/content/CVPR2024/supplemental/Zimmer_TUMTraf_V2X_Cooperative_CVPR_2024_supplemental.pdf
TUM Einrichtung:
School of Computation, Information and Technology
Copyright Informationen:
IEEE
Format:
Text
 BibTeX