Benutzer: Gast  Login
Titel:

Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Vortrag / Präsentation
Autor(en):
Song, Rui; Liu, Dai; Chen, Dave Zhenyu; Festag, Andreas; Trinitis, Carsten; Schulz, Martin; Knoll, Alois
Abstract:
In federated learning, all networked clients contribute to the model training cooperatively. However, with model sizes increasing, even sharing the trained partial models often leads to severe communication bottlenecks in underlying networks, especially when communicated iteratively. In this paper, we introduce a federated learning framework FedD3 requiring only one-shot communication by integrating dataset distillation instances. Instead of sharing model updates in other federated learning appr...     »
Kongress- / Buchtitel:
2023 International Joint Conference on Neural Networks (IJCNN)
Publikationsdatum:
02.08.2023
Jahr:
2023
Jahr / Monat:
2023-06
Monat:
Jun
Seiten:
10
Sprache:
en
Volltext / DOI:
doi:10.1109/IJCNN54540.2023.10191879
WWW:
https://ieeexplore.ieee.org/abstract/document/10191879
 BibTeX