Benutzer: Gast  Login
Titel:

InfraDet3D: Multi-Modal 3D Object Detection based on Roadside Infrastructure Camera and LiDAR Sensors

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zimmer, Walter; Birkner, Joseph; Brucker, Marcel; Nguyen, Huu Tung; Petrovski, Stefan; Wang, Bohan; Knoll, Alois C.
Abstract:
Current multi-modal object detection approaches focus on the vehicle domain and are limited in the perception range and the processing capabilities. Roadside sensor units (RSUs) introduce a new domain for perception systems and leverage altitude to observe traffic. Cameras and LiDARs mounted on gantry bridges increase the perception range and produce a full digital twin of the traffic. In this work, we introduce InfraDet3D, a multi-modal 3D object detector for roadside infrastructure sensors. We...     »
Stichworte:
Autonomous Driving, Deep Learning, Perception, Object Detection, Roadside Sensors, Camera, LiDAR, Fusion
Dewey Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Kongresstitel:
2023 IEEE Intelligent Vehicles Symposium (IV)
Zeitschriftentitel:
2023 IEEE Proceedings of Intelligent Vehicles Symposium (IV)
Jahr:
2023
Jahr / Monat:
2023-06
Monat:
Jun
Seitenangaben Beitrag:
8
Volltext / DOI:
doi:10.1109/IV55152.2023.10186723
WWW:
https://ieeexplore.ieee.org/document/10186723
Semester:
SS 23
TUM Einrichtung:
School of Computation, Information and Technology
 BibTeX