Benutzer: Gast  Login

Titel:

Collaborative Semantic Occupancy Prediction with Hybrid Feature Fusion in Connected Automated Vehicles

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Song, Rui; Liang, Chenwei; Cao, Hu; Yan, Zhiran; Zimmer, Walter; Gross, Markus; Festag, Andreas; Knoll, Alois
Abstract:
Collaborative perception in automated vehicles leverages the exchange of information between agents, aiming to elevate perception results. Previous camera-based collaborative 3D perception methods typically employ 3D bounding boxes or bird's eye views as representations of the environment. However, these approaches fall short in offering a comprehensive 3D environmental prediction. To bridge this gap, we introduce the first method for collaborative 3D semantic occupancy prediction. Particularly,...     »
Stichworte:
Autonomous Driving, Cooperative Perception, V2X, Semantic Occupancy Prediction, Semantic Scene Completion
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Herausgeber:
IEEE/CVF
Kongress- / Buchtitel:
2024 IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)
Datum der Konferenz:
17.06.2024
Jahr:
2024
Reviewed:
ja
Sprache:
en
TUM Einrichtung:
Chair of Robotics, Artificial Intelligence and Real-Time Systems
Format:
Text
 BibTeX