Benutzer: Gast  Login
Titel:

PCTMA-Net: Point Cloud Transformer with Morphing Atlas-based Point Generation Network for Dense Point Cloud Completion

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Lin, Jianjie; Rickert, Markus; Perzylo, Alexander; Knoll, Alois
Abstract:
Inferring a complete 3D geometry given an incomplete point cloud is essential in many vision and robotics applications. Previous work mainly relies on a global feature extracted by a Multi-layer Perceptron (MLP) for predicting the shape geometry. This suffers from a loss of structural details, as its point generator fails to capture the detailed topology and structure of point clouds using only the global features. The irregular nature of point clouds makes this task more challenging. This paper...     »
Stichworte:
Point Cloud Completion, Transformer, Encoder-Decoder Structure
Kongress- / Buchtitel:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Jahr:
2021
Monat:
Sep
Volltext / DOI:
doi:10.1109/IROS51168.2021.9636483
WWW:
https://linjianjie.github.io/pctMA-Net/
 BibTeX