Driving through complex urban environments is a challenging task for autonomous vehicles (AVs), as they must safely reach their mission goal, and react properly to traffic participants while obeying traffic rules. Deep reinforcement learning (DRL) is a promising method to generate driving policies for AVs because it can explore complex environments and learn suitable reactions. In this work, we present a DRL algorithm for AVs to handle intersection scenarios while considering trafc rules. Furthermore, we enhance the safety of our DRL algorithm's decisions by introducing a safety checker based on a responsibility-sensitive safety (RSS) model. Evaluations show that our DRL algorithm outperforms the baseline method by driving safely to reach the mission goal while obeying the traffic rules at an intersection.
«
Driving through complex urban environments is a challenging task for autonomous vehicles (AVs), as they must safely reach their mission goal, and react properly to traffic participants while obeying traffic rules. Deep reinforcement learning (DRL) is a promising method to generate driving policies for AVs because it can explore complex environments and learn suitable reactions. In this work, we present a DRL algorithm for AVs to handle intersection scenarios while considering trafc rules. Furth...
»