Benutzer: Gast  Login
Titel:

Online Path Generation from Sensor Data for Highly Automated Driving Functions

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Tim Salzmann, Julian Thomas, Thomas Kühbeck, Jou-ching Sung, Sebastian Wagner, Alois Knoll
Abstract:
State-of-the-art autonomous driving systems rely on high precision map data. These map data are crucial to the driving function and therefore need to be validated during drive time. This work describes a probabilistic neural model inferring information about the road in front of an automated vehicle from sensory data. This problem is modeled as a pixel- wise classification problem. Thereby, the limitations of systems relying on pre-processed map data are overcome by replacing navigation related...     »
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Herausgeber:
IEEE
Kongress- / Buchtitel:
Proceedings of the 22nd IEEE International Conference on Intelligent Transportation Systems
Ausrichter der Konferenz:
IEEE
Publikationsdatum:
27.10.2019
Jahr:
2019
Quartal:
4. Quartal
Jahr / Monat:
2019-10
Monat:
Oct
Reviewed:
ja
Volltext / DOI:
doi:10.1109/ITSC.2019.8917371
 BibTeX