Benutzer: Gast  Login
Titel:

Targetless Rotational Auto-Calibration of Radar and Camera for Intelligent Transportation Systems

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Christoph Schöller*, Maximilian Schnettler*, Annkathrin Krämmer, Gereon Hinz, Maida Bakovic, Müge Güzet and Alois Knoll
Abstract:
Most intelligent transportation systems use a combination of radar sensors and cameras for robust vehicle perception. The calibration of these heterogeneous sensor types in an automatic fashion during system operation is challenging due to differing physical measurement principles and the high sparsity of traffic radars. We propose - to the best of our knowledge - the first data-driven method for automatic rotational radar-camera calibration without dedicated calibration targets. Our approach is...     »
Stichworte:
Calibration, Sensors, Radar, Camera, Deep Learning, Neural Networks, Machine Learning, Intelligent Transportation Systems, Autonomous Driving
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Kongress- / Buchtitel:
Intelligent Transportation Systems Conference (ITSC)
Jahr:
2019
 BibTeX