Benutzer: Gast  Login
Dokumenttyp:
Preprint
Art des Preprints:
Zeitschriftenaufsatz
Autor(en):
Zimmer, Walter; Erçelik, Emeç; Zhou, Xingcheng; Diaz Ortiz, Xavier Jair; Knoll, Alois C.
Titel:
A Survey of Robust LiDAR-based 3D Object Detection Methods for Autonomous Driving
Abstract:
The purpose of this work is to review the state-of-the-art LiDAR-based 3D object detection methods, datasets, and challenges. We describe novel data augmentation methods, sampling strategies, activation functions, attention mechanisms, and regularization methods. Furthermore, we list recently introduced normalization methods, learning rate schedules and loss functions. Moreover, we also cover advantages and limitations of 10 novel autonomous driving datasets. We evaluate novel 3D object detector...     »
Stichworte:
Autonomous Driving, Deep Learning, Perception, Object Detection, LiDAR, Point Cloud
Dewey Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Zeitschriftentitel:
arxiv
Jahr:
2022
Reviewed:
ja
WWW:
https://arxiv.org/pdf/2204.00106.pdf
Eingereicht (bei Zeitschrift):
31.03.2022
Angenommen (von Zeitschrift):
31.03.2022
Publikationsdatum:
31.03.2022
Copyright Informationen:
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
TUM Einrichtung:
School of Computation, Information and Technology
 BibTeX