Benutzer: Gast  Login
Titel:

Continual Learning on Incremental Simulations for Real-World Robotic Manipulation Tasks

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Josifovski, Josip; Malmir, Mohammadhossein; Klarmann, Noah; Knoll, Alois
Seitenangaben Beitrag:
Nicht veröffentlichter Vortrag
Abstract:
Current state-of-the-art approaches for transferring deep-learning models trained in simulation either rely on highly realistic simulations or employ randomization techniques to bridge the reality gap. However, such strategies do not scale well for complex robotic tasks; highly-realistic simulations are computationally expensive and hard to implement, while randomization techniques become sample-inefficient as the complexity of the task increases. In this paper, we propose a procedure for train...     »
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Kongress- / Buchtitel:
2nd Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics at Robotics: Science and Systems (R:SS) 2020
Jahr:
2020
Reviewed:
nein
Sprache:
en
Erscheinungsform:
WWW
WWW:
https://sim2real.github.io/assets/papers/2020/josifovski.pdf
Format:
Text
 BibTeX