Fouling and cleaning in heat exchangers are severe and costly (up to 0.3% of gross national product) issues in dairy and food processing. Therefore, reducing cleaning time and cost is urgently needed. In this study, two classification methods [artificial neural network (ANN) and support vector machine (SVM)] for detecting protein and mineral fouling presence and absence based on ultrasonic measurements were presented and compared. ANN is based on a multilayer perceptron feed forward neural network, whereas SVM is based on clustering between fouling and no fouling using a hyperplane. When both fouling types (1239 datasets) were combined, ANN showed an accuracy of 71.9% while SVM displayed an accuracy of 97.6%. Separate fouling detection of mineral/protein fouling by ANN/SVM was comparable: dependent on fouling type detection accuracies of 100% (protein fouling, ANN and SVM), and 98.2% (SVM), and 93.5% (ANN) for mineral fouling was reached. It was shown that it was possible to detect fouling presence and absence offline in a static setup using ultrasonic measurements in combination with a classification method. This study proved the applicability of combining classification methods and fouling measurements to take a step toward reducing cleaning costs and time.
«
Fouling and cleaning in heat exchangers are severe and costly (up to 0.3% of gross national product) issues in dairy and food processing. Therefore, reducing cleaning time and cost is urgently needed. In this study, two classification methods [artificial neural network (ANN) and support vector machine (SVM)] for detecting protein and mineral fouling presence and absence based on ultrasonic measurements were presented and compared. ANN is based on a multilayer perceptron feed forward neural netwo...
»