Benutzer: Gast  Login
Titel:

Poincare-map-based reinforcement learning for biped walking

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Jun Morimoto, Jun Nakanishi, Gen Endo, Gordon Cheng, Christopher G Atkeson, Garth Zeglin
Seitenangaben Beitrag:
2381-2386
Abstract:
We propose a model-based reinforcement learning algorithm for biped walking in which the robot learns to appropriately modulate an observed walking pattern. Via-points are detected from the observed walking trajectories using the minimum jerk criterion. The learning algorithm modulates the via-points as control actions to improve walking trajectories. This decision is based on a learned model of the Poincaré map of the periodic walking pattern. The model maps from a state in the single support p...     »
Herausgeber:
IEEE
Kongress- / Buchtitel:
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
Ausrichter der Konferenz:
IEEE
Jahr:
2005
Jahr / Monat:
2005-04
Reviewed:
ja
Sprache:
en
 BibTeX