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Abstract— We propose a model-based reinforcement learn-
ing algorithm for biped walking in which the robot learns
to appropriately modulate an observed walking pattern. Via-
points are detected from the observed walking trajectories
using the minimum jerk criterion. The learning algorithm
modulates the via-points as control actions to improve walking
trajectories. This decision is based on a learned model of the
Poincaré map of the periodic walking pattern. The model
maps from a state in the single support phase and the control
actions to a state in the next single support phase. We applied
this approach to both a simulated robot model and an actual
biped robot. We show that successful walking policies are
acquired.

Index Terms— Biped Walking; Reinforcement Learning;
Poincaré map

I. INTRODUCTION

We propose a learning algorithm to acquire an appropri-
ate biped walking controllers by modulating an observed
walking pattern. We are using model-based reinforcement
learning, where we learn a model of a Poincaré map and
then choose control actions based on a computed value
function. We detect via-points from an observed walking
trajectory and use the via-points as control actions.

Several researchers have applied reinforcement learning
to biped locomotion [12], [2]. Few studies deal with a
physical robots because reinforcement learning methods
often require large numbers of trials. The policy gradient
method [17] is one of the reinforcement learning methods
successfully applied to learn biped walking on actual
robots [1], [19]. However, [1] requires hours to learn a
walking controller, and [19] requires a mechanically stable
robot.

On the other hand, [3] reported that a model-based
approach to reinforcement learning is able to accomplish
given tasks much faster than without using knowledge of
the environment. In our previous work [11], we showed that
a model-based approach using an approximated Poincaré
map could be applied to learn biped walking in small
numbers of trials. However, we used an empirically de-

Fig. 1. Five link biped robot. Input state x = (d, ḋ)

signed nominal trajectory for the proposed method, and
acquired a successful walking pattern only in a simulated
environments. In this study, we use observed trajectories,
such as those of humans or other robots controlled by this
or other algorithms, as nominal trajectories. We show that
the proposed method can be applied to an actual robot
(Fig. 1).

First, we use a simulated 5 link biped robot (Fig. 1)
to evaluate our proposed method. Physical parameters of
the 5 link simulated robot in TABLE I are selected to
model the actual biped robot fixed to a boom that keeps
the robot in the sagittal plane (Fig. 1). Our biped has
a short torso and round feet without ankle joints. For
these bipeds, controlling biped walking trajectories with the
popular ZMP approach [7], [22] is difficult or impossible,
and thus an alternative method for controller design must
be used.

In section II, we introduce our reinforcement learning
method for biped walking. In section III, we show simu-
lation results. In section IV, we present an implementation
of the proposed method on the real robot, and then demon-
strate that the robot acquires a successful walking pattern
within 100 trials.

II. POINCARÉ-MAP-BASED REINFORCEMENT

LEARNING FOR BIPED LOCOMOTION

We improve biped walking controllers based on an
approximated Poincaré map using a model-based reinforce-



TABLE I

PHYSICAL PARAMETERS OF THE FIVE LINK ROBOT MODEL

trunk thigh shin
mass [kg] 2.0 0.64 0.15
length [m] 0.01 0.2 0.2

inertia (×10−4 [kg · m2]) 1.0 6.9 1.4

ment learning framework [3], [16]. The Poincaré map rep-
resents the locus of intersection of the biped trajectory with
a hyperplane subspace of the full trajectory state space.
In our case, we are interested in the system state at two
symmetric phase angles of the walking gait. Modulating
via-points affects the locus of intersection and our learned
model reflects this effect. Given a learned mapping, we
proceed to learn a corresponding value function for states
at phases φ = 1

2π and φ = 3
2π (Fig. 2), where we define

phase φ = 0 as the left foot touchdown.
The input state is defined as x = (d, ḋ), where d denotes

the horizontal distance between the stance foot position
and the body position (Fig. 1). We use the hip position
as the body position because the center of mass is nearly
coincident with the hips (Fig. 1). We use a human walking
pattern in [5] as the nominal trajectory (Fig. 3). The action
of the robot u =θact(x) = (θact

hip, θ
act
knee) modulates the

via-points of the nominal trajectory at each joint:

θi
hip vp = θ̄i

hip vp + θact
hip(x) (i = 1, · · · , nv

hip), (1)

θi
knee vp = θ̄i

knee vp + θact
knee(x) (i = 1, · · · , nv

knee),(2)

where nv
hip = 1 and nv

knee = 2 denote the number of
selected via-points, and θ̄i

hip vp and θ̄i
knee vp denote the

nominal value of the selected via-points. Each selected via-
point on a same joint is equally modulated by the control
output θact.

Fig. 2. Biped walking cycle: we update parameters and select actions at
Poincaré sections at phase φ = π

2
and φ = 3π

2
. L:left leg, R:right leg

A. Function approximator

We use Receptive Field Weighted Regres-
sion(RFWR) [15] as the function approximator for
the policy, the value function and the estimated Poincaré
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Fig. 3. Nominal joint-angle trajectories observed from a human walking
pattern and detected via-points represented by cross (×). Manually se-
lected via-points represented by circle (◦) are modulated by control output
θact. Note that amplitude of the human walking pattern is multiplied by
0.7 to match the small size robot (Fig 1).

map. We approximate a target function g(x) with

ĝ(x) =
∑Nb

k=1 ak(x)hk(x)∑Nb

k=1 ak(x)
, (3)

hk(x) = wT
k x̃k, (4)

ak(x) = exp
(
−1

2
(x− ck)T Dk(x− ck)

)
, (5)

where ck is the center of the k-th basis function, Dk is
the distance metric of the k-th basis function, Nb is the
number of basis functions, and x̃k = ((x − ck)T , 1)T is
the augmented state. The update rule for the parameter w
is given by:

∆wk = akPkx̃k(g(x)− hk(x)), (6)

where

Pk ← 1
λ

(
Pk − Pkx̃kx̃T

k Pk

λ
ak

+ x̃T
k Pkx̃k

)
, (7)

and λ = 0.999 is the forgetting factor.
In this study, we allocate a new basis function if the

activation of all existing units is smaller than a threshold
amin, i.e.,

max
k
ak(x) < amin, (8)

where amin = exp(− 1
2 ). We initially align basis functions

ak(x) at even intervals in each dimension of input space
x = (d, ḋ) (Fig. 1) [−0.2(m) ≤ d ≤ 0.2(m) and
−1.0(m/s) ≤ ḋ ≤ 1.0(m/s)]. Initial numbers of basis



functions are 400(=20 × 20) for approximating the policy
and the value function. We put 1 basis function at the origin
for approximating the Poincaré map. We set the distance
metric Dk to Dk = diag{2500, 90} for the policy and the
value function, and Dk = diag{2500, 225, 1600, 1600} for
the Poincaré map. The centers of the basis functions ck and
the distance metrics of the basis functions Dk are fixed
during learning.

B. Learning the Poincaré map of biped walking

We learn a model that predicts the state of the biped
a half cycle ahead, based on the current state and the
modulated via-points. We are predicting the location of
the system in a Poincaré section at phase φ = 3π

2 based
on the system’s location in a Poincaré section at phase
φ = π

2 (Fig. 2). We use a different model to predict the
location at phase φ = π

2 based on the location at phase
φ = 3π

2 due to the real robot possessing asymmetries
caused by a supporting boom.

Because the state of the robot drastically changes at foot
touchdown (φ = 0, π), we select the phases φ = π

2 and
φ = 3π

2 as Poincaré sections. We approximate this Poincaré
map using a function approximator with a parameter vector
wm,

x̂ 3π
2

= f̂1(xπ
2
,uπ

2
;wm

1 ), (9)

x̂π
2

= f̂2(x 3π
2
,u 3π

2
;wm

2 ), (10)

where the input state is defined as x = (d, ḋ), and the
action of the robot is defined as u = θact(x).

C. Representation of biped walking trajectories and the
low-level controller

We interpolated trajectories between the via-points by
using the minimum jerk criteria [6], [21]. To follow the
generated target trajectories, the torque output at each joint
is given by a PD servo controller:

τj = k(θd
j (φ) − θj)− bθ̇j , (11)

where θd
j (φ) is the target joint angle for j-th joint (j =

1 · · · 4), position gain k is set to k = 4.0 except for the
knee joint of the stance leg (we use k = 9.0 for the knee
joint of the stance leg), and the velocity gain b is set to
b = 0.1.

We reset the phase [20], [13] to φ = φreset at left foot
touchdown and to φ = π+φreset at right foot touchdown,
where φreset = 0.7 rad is empirically determined.

D. Rewards

The robot gets a reward r according to the control cost
rcost and walking velocity rvel:

r(t) = rcost(t) + rvel(t), (12)

where rcost(t) = 0.1
∑

j τ
2
j (t)∆t, rvel(t) = v(t)∆t, v(t)

m/sec denotes walking speed, and ∆t = 0.001 sec. The
robot gets punishment (negative reward) if it falls down.

If the height of the body goes below 0.38m, the robot is
given a negative reward (-1) and the trial is terminated.

E. Learning the value function

In a reinforcement learning framework, the learner tries
to create a controller which maximizes expected total
return. We define the value function for the policy µ:

V µ(x(t)) = E[r(t+1)+γr(t+2)+γ2r(t+3)+...], (13)

where r(t) is the reward at time t, and γ (0 ≤ γ ≤ 1)
is the discount factor. In this framework, we evaluate
the value function only at φ(t) = π

2 and φ(t) = 3
2π.

Thus, we consider our learning framework as model-based
reinforcement learning for a semi-Markov decision process
(SMDP) [18]. We use a function approximator with a
parameter vector wv to represent the value function:

V̂ (t) = V̂ (x(t);wv). (14)

By considering the deviation from equation (13), we can
define the temporal difference error (TD-error) [16], [18]:

δ(t) =
tT∑

k=t+1

γk−t−1r(k) + γtT−tV̂ (tT )− V̂ (t), (15)

where tT is the time when φ(tT ) = 1
2π or φ(tT ) = 3

2π.
The update rule for the value function can be derived as

V̂ (x(t))← V̂ (x(t)) + βδ(t), (16)

where β = 0.2 is a learning rate. The parameter vector wv

is updated by equation (6).

F. Learning a policy for biped locomotion

We use a stochastic policy to generate exploratory action.
The policy is represented by a probabilistic model:

µ(u(t)|x(t)) =
1√
2πσ

exp
(
− (u(t)−A(x(t);wa))2

2σ2

)
,

(17)
where A(x(t);wa) denotes the mean of the model, which
is represented by a function approximator, where wa is a
parameter vector. We changed the variance σ according to
the trial as σ = 0.1

(
150−Ntrial

150

)
+ 0.01 for Ntrial ≤ 150

and σ = 0.01 for Ntrial > 150, where Ntrial denotes the
number of trials. The output of the policy is

u(t) = A(x(t);wa) + σn(t), (18)

where n(t) ∼ N(0, 1). N(0, 1) indicate a normal distribu-
tion which has mean of 0 and variance of 1.

We derive the update rule for a policy by using the value
function and the estimated Poincaré map.

1) Predict the next state x̂(tT ) from the current state
x(t) and the nominal action u = A(x(t);wa) using
the Poincaré map model x̂(tT ) = f̂ (x(t),u(t);wm).

2) Derive the gradient of the value function ∂V
∂x at the

predicted state x̂(tT ).



3) Derive the gradient of the dynamics model ∂f
∂u at

the current state x(t) and the nominal action u =
A(x(t);wa).

4) Update the policy µ:

A(x;wa)← A(x;wa) + α
∂V (x)
∂x

∂f(x,u)
∂u

, (19)

where α = 0.2 is the learning rate. The parameter vector
wa is updated by equation (6). We can consider the output
u(t) is an option in the SMDP [18] initiated in state x(t)
at time t when φ(t) = 1

2π (or φ = 3
2π), and it terminates

at time tT when φ = 3
2π (or φ = 1

2π).

III. SIMULATION RESULTS

We applied the proposed method to the 5 link simulated
robot (Fig. 1). We used a manually generated initial step
to get the pattern started. We set the walking period to
T = 0.9 sec (ω = 7.0 rad/sec). A trial is terminated after
15 seconds or after the robot falls down. Figure 4 (Top)
shows the walking pattern before learning.

We defined a successful trial when the robot continu-
ously walks for more than 15 seconds, which approxi-
mately corresponds to 30 steps. Figure 5 shows the ac-
cumulated reward, averaged over 10 simulation runs, at
each trial. Stable walking controllers were acquired within
200 trials (Fig. 5) for every 10 simulation runs. However,
the performance of the acquired controller has a large
variance at each simulation run. This is probably because
scheduling of the stochasticity of the policy σ in (17) was
not appropriate. We need to include σ as a parameter of
the policy in our future work [17].

The shape of the value function is shown in Figure 6. The
minimum value of the value function is located at negative
body position d and negative body velocity ḋ because this
state leads the robot to fall backward. The maximum value
of the value function is located at negative body position
d and positive body velocity ḋ that leads to a successful
walk. The number of allocated basis functions are 400 for
approximating the value function, 400 for approximating
the policy, 443 for the Poincaré map f̂1 in equation (9),
and 393 for the Poincaré map f̂2 in equation (10).

The acquired walking pattern is shown in Figure 4
(Bottom). Figure 7 (Left) shows a phase diagram of a
successful walking pattern in the state space x = (d, ḋ)
after learning. A gradual increase of walking speed can
be observed. Figure 7 (Right) shows loci of the walking
trajectory at the Poincaré section. The walking trajectory
after learning passes through the section at almost same
place after a few steps.

IV. REAL ROBOT IMPLEMENTATION

We applied the proposed model-based reinforcement
learning scheme to a real biped (Fig. 1). We use a walk-
ing pattern generated by a pre-designed state machine
controller [14] as the nominal walking pattern (Fig 8).
We detect via-points from this nominal walking pattern

Fig. 4. Acquired biped walking pattern: (Top) Before learning, (Bottom)
After learning
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Fig. 5. Accumulated reward at each trial: Results of 10 experiments. We
filtered the data with moving average of 20 trials.

and manually select via-points that correspond to foot
placement (Fig 8). In this experiment, the control output
u = θact(x) = (θact

knee) modulate the selected via-points:

θi
knee vp= θ̄

i
knee vp + θact

knee(x) (i = 1, · · · , nv
knee). (20)

On each transition from phase φ = 1
2π (or φ = 3

2π) to
phase φ = 3

2π (or φ = 1
2π), the robot gets a reward of

0.1, if the height of the body remains above 0.38m during
the past half cycle. The robot gets punishment (negative
reward -1) if it falls down.

We changed the variance σ in equation (17) according
to the trial of σ = 0.1

(
50−Ntrial

50

)
+ 0.01 for Ntrial ≤ 50

and σ = 0.01 for Ntrial > 50, where Ntrial denotes the
number of trials. We set the walking period to T = 0.84 sec
(ω = 7.5 rad/sec). A trial is terminated after 30 steps or
after the robot fell down. We use the pre-designed state
machine for the initial 6 steps. We set the distance metric
Dk in equation (5) to Dk = diag{2500, 90} for the policy
and the value function, and Dk = diag{2500, 90, 1600}
for the Poincaré map.

We also used a phase resetting method for the real robot
experiment. We reset the phase to φ = φreset at left foot
touchdown and to φ = π+φreset at right foot touchdown,
where φreset = 0.3 rad.

Figure 9 shows a biped walking pattern before learning.
The robot fell over with the nominal walking pattern.
After 100 trials in the real environment, the robot acquired
a policy that generated a stable biped walking pattern.
We applied the acquired controller to a different ground
surface. Even on a metal surface, the robot successfully
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Fig. 7. (Left) Phase diagram in the state space (d, ḋ). (Right) Loci of
the walking trajectory at the Poincaré section. ⊗ represents the first locus
of the walking trajectory which passes through the section.

walked using the learned biped walking policy (Fig. 10).
Figure 11 shows the accumulated reward at each trial

using the real robot. The robot learned a stable walking
controller within 100 trials.

An acquired value function after 100 trials is shown in
Figure 12. The minimum value of the value function is lo-
cated around zero body position d = 0.0 and negative body
velocity ḋ, and the maximum value of the value function
is located around zero body position d = 0.0 and positive
body velocity ḋ. The difference between shape of the value
function acquired in the simulated environment (Fig. 6)
and the real environment (Fig. 12) is possibly caused by
the effect of the boom. The number of allocated basis
functions are 407 for approximating the value function, 401
for approximating the policy, 59 for the Poincaré map f̂1
in equation (9), and 59 for the Poincaré map f̂2 in equation
(10).

V. DISCUSSION

In this study, we proposed Poincaré-map-based rein-
forcement learning and applied the proposed method to
biped locomotion. The simulated robot acquired the biped
walking controller using observed human walking pattern
as the nominal trajectory. We also applied the proposed
approach to a physical biped robot and acquired a policy,
which successfully generated a walking pattern. We are
currently trying to use a human walking trajectory as the
nominal trajectory on the real biped. Automatic selection
of the via-points to be used as control actions is part of our
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Fig. 8. Nominal joint-angle trajectories and detected via-points repre-
sented by cross (×). Manually selected via-points represented by circle
(◦) are modulated by control output θact.
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Fig. 11. Accumulated reward at each trial using real robot. We filtered
the data with moving average of 20 trials.

future work. In our previous work, we have proposed a tra-
jectory optimization method for biped locomotion [9], [10]
based on differential dynamic programming [4], [8]. We
are now considering combining this trajectory optimization
method with the proposed reinforcement learning method.
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