The influence of thermal processing and nonenzymatic browning reactions on the IgE-binding activity of rAra h 2 was studied and compared to findings recently reported for the allergen's natural counterpart. ELISA experiments as well as inhibition assays revealed that thermal treatment of rAra h 2 in the presence of reactive carbohydrates and carbohydrate breakdown products induces a strong increase of the IgE-binding activity, thus collaborating with the data reported for the natural protein isolated from peanuts. To localize the Ara h 2 sequences responsible for the formation of highly IgE-affine glycation sites, model peptides have been synthesized mimicking sequences which contain possible targets for glycation as well as the immunodominant epitopes. Immunological evaluation of these peptides heated in the absence or presence of reducing sugars and carbonyls, respectively, revealed that neither the two lysine residues of Ara h 2 nor its N-terminus are involved in the formation of IgE-affine structures by Maillard reaction. Also, the cysteine-containing major epitope 3 (aa 27-36) was found to lose its IgE-binding capacity upon heating. By contrast, the overlapping major epitopes 6 and 7, which do not contain any lysine or arginine moieties, showed a distinct higher level of IgE binding when subjected to Maillard reaction, thus giving the first evidence that nonbasic amino acids might be accessible for nonenzymatic glycation reactions and that these posttranslational modifications might induce increased IgE binding of the glycated Ara h 2. Analogous experiments were performed with peanut agglutinin, considered in the literature as a minor allergen. ELISA experiments revealed that the majority of tested sera samples from peanut-sensitive patients showed a high level of IgE binding to the lectin even after heat treatment. In contradiction to published data, nonenzymatic browning reactions seem to deteriorate the IgE affinity of the lectin.
«
The influence of thermal processing and nonenzymatic browning reactions on the IgE-binding activity of rAra h 2 was studied and compared to findings recently reported for the allergen's natural counterpart. ELISA experiments as well as inhibition assays revealed that thermal treatment of rAra h 2 in the presence of reactive carbohydrates and carbohydrate breakdown products induces a strong increase of the IgE-binding activity, thus collaborating with the data reported for the natural protein iso...
»