Sensory-directed fractionation of an aqueous extract prepared from morel mushrooms led to the identification of gamma-aminobutyric acid as the chemical inducer of the mouth-drying and mouth-coating oral sensation imparted by morels. Additionally, L-glutamic acid, L-aspartic acid, succinic acid, and the previously unknown (S)-malic acid 1-O-beta-D-glucopyranoside, coined (S)-morelid, were detected as additional important umami-like taste compounds. To further bridge the gap between pure structural chemistry and human taste perception, 33 putative taste compounds were quantified in an aqueous morel extract and then rated for their taste contribution on the basis of dose-over-threshold factors. To confirm these quantitative results, an aqueous taste reconstitute was prepared by blending aqueous solutions of 16 amino acids, 6 organic acids, 3 purines, 4 carbohydrates, 3 minerals, and (S)-morelid in their {\dq}natural{\dq} concentrations. Triangle tests revealed that the taste profile of this biomimetic organoleptic cocktail did not differ significantly from the taste profile of authentic morel extract. To finally narrow down the number of key taste compounds, taste omission experiments were performed demonstrating that (S)-morelid together with L-glutamic acid, L-aspartic acid, malic acid, citric acid, acetic acid, and gamma-aminobutyric acid are the key organoleptics of morel extract. Moreover, sensory experiments with model solutions showed that (S)-morelid not only imparts a sour and umami-like taste but is able to amplify the taste activity of monosodium glutamate, as well as sodium chloride, solutions.
«
Sensory-directed fractionation of an aqueous extract prepared from morel mushrooms led to the identification of gamma-aminobutyric acid as the chemical inducer of the mouth-drying and mouth-coating oral sensation imparted by morels. Additionally, L-glutamic acid, L-aspartic acid, succinic acid, and the previously unknown (S)-malic acid 1-O-beta-D-glucopyranoside, coined (S)-morelid, were detected as additional important umami-like taste compounds. To further bridge the gap between pure structura...
»