Benutzer: Gast  Login
Titel:

A simple reinforcement learning algorithm for biped walking

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Jun Morimoto, Gordon Cheng, Christopher G Atkeson, Garth Zeglin
Seitenangaben Beitrag:
3030-3035
Abstract:
We propose a model-based reinforcement learning algorithm for biped walking in which the robot learns to appropriately place the swing leg. This decision is based on a learned model of the Poincare map of the periodic walking pattern. The model maps from a state at the middle of a step and foot placement to a state at next middle of a step. We also modify the desired walking cycle frequency based on online measurements. We present simulation results, and are currently implementing this approach...     »
Herausgeber:
IEEE
Kongress- / Buchtitel:
IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004
Band / Teilband / Volume:
3
Ausrichter der Konferenz:
IEEE
Jahr:
2004
Jahr / Monat:
2004-04
Reviewed:
ja
Sprache:
en
 BibTeX