Benutzer: Gast  Login
Titel:

Learning cpg sensory feedback with policy gradient for biped locomotion for a full-body humanoid

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Authors Gen Endo, Jun Morimoto, Takamitsu Matsubara, Jun Nakanishi, Gordon Cheng
Abstract:
This paper describes a learning framework for a central pattern generator based biped locomotion controller using a policy gradient method. Our goals in this study are to achieve biped walking with a 3D hardware humanoid, and to develop an efficient learning algorithm with CPG by reducing the dimensionality of the state space used for learning. We demonstrate that an appropriate feedback controller can be acquired within a thousand trials by numerical simulations and the obtained controller in n...     »
Kongress- / Buchtitel:
Proceedings of the Twentieth National Conference on Artificial Intelligence
Band / Teilband / Volume:
20
Ausgabe:
3
Datum der Konferenz:
July 9-13, 2005
Verlag / Institution:
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press
Jahr:
2005
Print-ISBN:
978-1-57735-236-5
 BibTeX