Benutzer: Gast  Login
Titel:

Framework for Learning a Hand Intent Recognition Model from sEMG for FES-Based control

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Das, Neha; Endo, Satoshi; Kavianirad, Hossein; Hirche, Sandra
Seitenangaben Beitrag:
1320-1327
Abstract:
Stroke survivors and individuals with neuromus-cular disorders often experience motor function impairments, particularly during hand movements crucial for activities of daily living (ADL). Functional Electrical Stimulation (FES) has emerged as a potential assistive and rehabilitative technique to address these limitations. However, accurately determining user intent during FES poses a significant challenge. This work proposes a framework for rapidly learning a model of the user's hand intent fro...     »
Stichworte:
rehyb; coman
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Horizon 2020:
ReHyb, CO-MAN
Kongress- / Buchtitel:
2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
Verlag / Institution:
IEEE
Publikationsdatum:
01.09.2024
Jahr:
2024
Volltext / DOI:
doi:10.1109/biorob60516.2024.10719910
 BibTeX