Benutzer: Gast  Login
Titel:

Towards Data-driven LQR with Koopmanizing Flows

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Petar Bevanda, Max Beier, Shahab Heshmati-Alamdari, Stefan Sosnowski, Sandra Hirche
Seitenangaben Beitrag:
13-18
Abstract:
We propose a novel framework for learning linear time-invariant (LTI) models for a class of continuous-time non-autonomous nonlinear dynamics based on a representation of Koopman operators. In general, the operator is infinite-dimensional but, crucially, linear. To utilize it for effcient LTI control design, we learn a finite representation of the Koopman operator that is linear in controls while concurrently learning meaningful lifting coordinates. For the latter, we rely on Koopmanizing Flows...     »
Stichworte:
Machine learning, Koopman operators, Learning for control, Representation Learning, Neural networks, Learning Systems
Horizon 2020:
SeaClear
Herausgeber:
Elsevier
Kongress- / Buchtitel:
IFAC-PapersOnLine
Kongress / Zusatzinformationen:
6th IFAC Conference on Intelligent Control and Automation Sciences ICONS 2022: Cluj-Napoca, Romania, 13–15 July 2022
Band / Teilband / Volume:
55
Ausgabe:
15
Jahr:
2022
Monat:
Jul
Seiten:
6
Nachgewiesen in:
Scopus; Web of Science
Serienbandnummer:
15
Sprache:
en
Volltext / DOI:
doi:https://doi.org/10.1016/j.ifacol.2022.07.601
 BibTeX