Benutzer: Gast  Login
Titel:

Grasp pose estimation in human-robot manipulation tasks using wearable motion sensors

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
D. Cehajic; S. Erhart; S. Hirche
Seitenangaben Beitrag:
1031 - 1036
Abstract:
Knowledge of the human grasp pose is crucial in common control schemes for human-robot object manipulation tasks. Biased estimates of the grasp pose cause undesired interaction wrenches on the human partner, which disturbs the interaction and the recognition of motion intention. A use of wearable motion sensors for tracking the human motion facilitates the grasp pose estimation without a global sensing system. This paper presents an approach for estimating...     »
Kongress- / Buchtitel:
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Jahr:
2015
Monat:
Oct
Seiten:
1031-1036
Volltext / DOI:
doi:10.1109/IROS.2015.7353497
 BibTeX