User: Guest  Login
Title:

Grasp pose estimation in human-robot manipulation tasks using wearable motion sensors

Document type:
Konferenzbeitrag
Contribution type:
Textbeitrag / Aufsatz
Author(s):
D. Cehajic; S. Erhart; S. Hirche
Pages contribution:
1031 - 1036
Abstract:
Knowledge of the human grasp pose is crucial in common control schemes for human-robot object manipulation tasks. Biased estimates of the grasp pose cause undesired interaction wrenches on the human partner, which disturbs the interaction and the recognition of motion intention. A use of wearable motion sensors for tracking the human motion facilitates the grasp pose estimation without a global sensing system. This paper presents an approach for estimating...     »
Book / Congress title:
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Year:
2015
Month:
Oct
Pages:
1031-1036
Fulltext / DOI:
doi:10.1109/IROS.2015.7353497
 BibTeX