FPGA as general-purpose accelerators can greatly improve system efficiency and performance in cloud and edge devices alike. However, they have recently become the focus of remote attacks, such as fault and side-channel attacks from one to another user of a part of the FPGA fabric. In this work, we consider system-on-chip platforms, where an FPGA and an embedded processor core are located on the same die. We show that the embedded processor core is vulnerable to voltage drops generated by the FPGA logic. Our experiments demonstrate the possibility of compromising the data transfer from external DDR memory to the processor cache hierarchy. Furthermore, we were also able to fault and skip instructions executed on an ARM Cortex-A9 core. The FPGA based fault injection is shown precise enough to recover the secret key of an AES T-tables implementation found in the mbedTLS library.
«
FPGA as general-purpose accelerators can greatly improve system efficiency and performance in cloud and edge devices alike. However, they have recently become the focus of remote attacks, such as fault and side-channel attacks from one to another user of a part of the FPGA fabric. In this work, we consider system-on-chip platforms, where an FPGA and an embedded processor core are located on the same die. We show that the embedded processor core is vulnerable to voltage drops generated by the FPG...
»