Benutzer: Gast  Login
Titel:

Inverse reinforcement learning for dexterous hand manipulation

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Jedrzej Orbik, Alejandro Agostini, Dongheui Lee
Seitenangaben Beitrag:
1-7
Abstract:
The success of deep reinforcement learning approaches to learn dexterous manipulation skills strongly hinges on the rewards assigned to actions during task execution. The usual approach is to handcraft the reward function but due to the high complexity of dexterous manipulations the reward definition demands large engineering effort for each particular task. To avoid this burden, we use an inverse reinforcement learning (IRL) approach to automatically learn the reward function using samples obta...     »
Kongress- / Buchtitel:
2021 IEEE International Conference on Development and Learning (ICDL)
Jahr:
2021
Volltext / DOI:
doi:10.1109/ICDL49984.2021.9515637
 BibTeX