One interesting question is how the good local approximation behavior
of the Shannon sampling series for the Paley–Wiener space PW1
π is affected if the
samples are disturbed by the non-linear threshold operator. This operator, which is
important in many applications, sets all samples whose absolute value is smaller than
some threshold to zero. In this paper we analyze a generalization of this problem, in
which not the Shannon sampling series is disturbed by the threshold operator but a
more general system approximation process, were a stable linear time-invariant system
is involved. We completely characterize the stable linear time-invariant systems
that, for some functions in PW1
π , lead to a diverging approximation process as the
threshold is decreased to zero. Further, we show that if there exists one such function
then the set of functions for which divergence occurs is in fact a residual set. We
study the pointwise behavior as well as the behavior of the L
∞-norm of the approximation
process. It is known that oversampling does not lead to stable approximation
processes in the presence of thresholding. An interesting open problem is the characterization
of the systems that can be stably approximated with oversampling.
«
One interesting question is how the good local approximation behavior
of the Shannon sampling series for the Paley–Wiener space PW1
π is affected if the
samples are disturbed by the non-linear threshold operator. This operator, which is
important in many applications, sets all samples whose absolute value is smaller than
some threshold to zero. In this paper we analyze a generalization of this problem, in
which not the Shannon sampling series is disturbed by the threshold operator but a
m...
»