Benutzer: Gast  Login
Titel:

On the Compatibility of Multistep Lookahead and Hessian Approximation for Neural Residual Gradient

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Poster
Autor(en):
Gottwald, Martin; Shen, Hao
Abstract:
In this work, we investigate, how multistep lookahead affects critical points of Residual Gradient algorithms. We set up a compound Bellman Operator for k consecutive transitions similar to TD(λ) methods and analyse the critical points of the associated Mean Squared Bellman Error (MSBE). By collecting per state multiple successors at once, one can create a more informative objective without increasing the requirements for function approximation architectures. In an empirical analysis, we observe...     »
Stichworte:
Critical Point Analysis, Gauss Newton Algorithm, Mean Squared Bellman Error, Multistep Lookahead, Residual Gradient
Dewey-Dezimalklassifikation:
620 Ingenieurwissenschaften
Kongress- / Buchtitel:
The Multi-disciplinary Conference on Reinforcement Learning and Decision Making
Kongress / Zusatzinformationen:
Providence, USA
Publikationsdatum:
08.06.2022
Jahr:
2022
Quartal:
2. Quartal
Jahr / Monat:
2022-06
Monat:
Jun
Seiten:
4
Reviewed:
ja
Sprache:
en
Erscheinungsform:
WWW
WWW:
RLDM 2022 Abstract Booklet (Final Version)
TUM Einrichtung:
Lehrstuhl für Datenverarbeitung
Format:
Text
Eingabe:
02.08.2022
Letzte Änderung:
02.08.2022
CC-Lizenz:
by-nc-sa, http://creativecommons.org/licenses/by-nc-sa/3.0/de
 BibTeX