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Abstract

In this work, we investigate, how multistep lookahead affects critical points of Residual Gradient algorithms. We set up a
compound Bellman Operator for k consecutive transitions similar to TD(λ) methods and analyse the critical points of
the associated Mean Squared Bellman Error (MSBE). By collecting per state multiple successors at once, one can create a
more informative objective without increasing the requirements for function approximation architectures. In an empirical
analysis, we observe that if one uses Hessian based optimisation to minimise the MSBE, it is not possible to benefit from
larger lookahead. Already high convergence speeds and overall lower final error of a Gauss Newton algorithm seem
to prevent further improvements by larger lookahead. Only first order gradient descent shows a significant boost in
convergence for larger k, emphasizing the importance of multiple steps for existing and successful Deep Reinforcement
Learning algorithms. Our results suggest that there are still open questions for Neural Network training in Reinforcement
Learning applications.
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1 Introduction

Reinforcement Learning (RL) is a general approach to solve sequential decision making problems. When facing large
or even continuous state spaces, Value Function Approximation (VFA) must be used as inevitable and effective tool
[Bertsekas, 2012, Sutton and Barto, 2020]. Recent research efforts have focused more on Non-Linear Value Function
Approximation (NL-VFA) methods, which use Neural Networks (NN), e.g. in the form of Multi-Layer Perceptrons (MLP),
as approximation architecture. Impressive successes of NNs in solving challenging problems in pattern recognition,
computer vision, speech recognition and game playing [LeCun et al., 2015, Yu and Deng, 2015, Mnih et al., 2015, Silver
et al., 2017] have further triggered increasing efforts in applying NNs to VFA [van Hasselt et al., 2016].

A key ingredient in well performing RL algorithms, which make use of NL-VFA, are n-step returns [Mnih et al., 2016] or full
TD(λ) like multistep lookahead mechanisms [Schulman et al., 2016, 2017]. This means, instead of using (s, a, r, s′, a′) tuples,
one incorporates multiple consecutive transitions at once for learning. Due to the accumulated amount of information in
the transition data, algorithms work more reliably with better convergence or higher quality approximations.

In this work, we investigate and analyse the impact of multistep lookahead on Residual Gradient (RG) algorithms [Baird III,
1995], especially when using a Gauss Newton (GN) algorithm for optimisation [Gottwald et al., 2021]. We extend the loss
for training with multistep lookahead and derive its differential map. The influence of larger lookahead on critical points
is outlined and empirical experiments regarding convergence and generalisation performance are described.

2 Method

We use a Markov Decision Process (MDP) with a continuous state space S , discrete action space A, one step reward r and
discount factor γ to model the decision making. In this work, only deterministic transitions are considered to avoid the
Double Sampling issue when working with RG algorithms [Baird III, 1995]. The goal is to learn an optimal policy π, which
maps states to actions in such a way that an accumulated reward signal is maximised. To assess its quality, one employs
the value function Vπ : S → R, which is defined as

Vπ(s0) =

∞∑
t=0

γtr(st, π(st), st+1). (1)

Once Vπ is known, it can be used to define an improved policy. The value function under policy π is the unique fixed
point of the Bellman operator Tπ

Vπ(s) = (Tπ Vπ)(s) = r(s, π(s), s′) + γVπ(s
′) ∀s ∈ S, (2)

where s′ is the successor of s when executing the action a = π(s). For an arbitrary V : S → R, the squared difference
of the left and right hand side in Eq. (2) can be used as an objective function to convert the fixed point problem into an
optimisation task. Multistep lookahead is now obtained by k repeated applications of the operator. This can either be
done by summing all powers of Tπ with exponential weighting to obtain the TD(λ) method, or by using only finite many
powers and combining them as simple average. In the latter case, one defines Tπ for several steps k by introducing the
compound operator

T(k)
π =

1

k

k∑
i=1

Ti
π . (3)

As an example, three step lookahead results in T
(3)
π = 1/3

(
T1

π +T2
π +T3

π

)
with (T2

π V )(s) = r(s, π(s), s′)+γr(s′, π(s′), s′′)+

γ2V (s′′) and (T3
π V )(s) = r(s, π(s), s′) + γr(s′, π(s′), s′′) + γ2r(s′′, π(s′′), s′′′) + γ3V (s′′′). Higher powers of Tπ are defined

similarly. The fixed point of T(k)
π is still Vπ as defined in Eq. (1) and yields the condition Vπ(s) = (T

(k)
π Vπ)(s). Hence, T(k)

π

also allows for a conversion of the fixed point iteration into a root finding problem by defining

δ(s, s′, s′′, . . . , s(k)) := V (s)− (T(k)
π V )(s). (4)

The current state s and its k successors s′, s′′ until s(k) are collected from the dynamical system under control according to
the current policy. After collecting a batch of N start states si, which are uniformly distributed in the whole state space,
and their successors s

(j)
i , one can approximate a solution to the root finding problem with the MLP f : W × S → R by

minimising the multistep Neural Mean Squared Bellman Error (NMSBE)

J (W) :=
1

2N

N∑
i=1

(
f(W, si)−

k−1∑
j=0

(k − j)
γj

k
rij −

k∑
j=1

γj

k
f(W, s

(j)
i )

)2

=
1

2N
∆(k)

π (W)T∆(k)
π (W), (5)

where the expression ∆
(k)
π (W) ∈ RN takes the form

∆(k)
π (W) := F (W)− 1

k
R(k)

π − 1

k

k∑
j=1

γjF (j)(W) (6)
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by collecting for all i the evaluation of f for the states as vector F (W) := [f(W, s1) . . . f(W, sN )]T ∈ RN . Further, we use
the abbreviation rij = r(s

(j)
i , π(s

(j)
i ), s

(j+1)
i ) and accumulate all reward terms in R

(k)
π . Critical points of J (W) are now

characterised by the equation

∇WJ (W) =
1

N

(
G(W)− 1

k

k∑
j=1

γjG(j)(W)︸ ︷︷ ︸
=:G̃(W)∈RN×Nnet

)T

∆(k)
π (W) = 0, (7)

where G(W) is the differential map of F with respect to the parameters W evaluated at all start states. With G(j)(W)

we denote the same item but use the j-th successor states as input. We see that T(k)
π provides a richer objective for the

optimisation problem than T
(1)
π without increasing the required number of network parameters to allow for a full rank of

G̃(W). A full rank of G̃(W) is important to ensure that any critical point achieves zero error, since in this case ∆
(k)
π (W) = 0

is the only way to satisfy the critical point condition of Eq. (7). This property is important, as it removes local minima and
saddle points. In practical applications, the rank of G̃(W) is full, since sampling and numerical inaccuracies are present. If
exact learning is out of reach, i.e., ∆(k)

π (W) 6= 0 ∀ W ∈ W , the objective is free of critical points. One can run a descent
algorithm as long as possible.

There remains an open problem in the definition of ∆
(k)
π (W), which exists due to the sampling of states and their

successors. We hypothesize that with only one step transitions, it is relatively easy to sample states with large pairwise
distances. Especially in high dimensional spaces, this could be rather common. In such a case, an MLP could approximate
a function, where ∆

(1)
π (W) becomes zero without being everywhere close to Vπ, because for some states the transition

information to remaining parts of the state space might not be present in the sampled data. Thus, the sampling based
loss of Eq. (5) has uncontrollable degrees of freedom and for k = 1, one can even construct examples to demonstrate this
issue. We expect that a multistep lookahead algorithm helps here. Due to the use of trajectories, one ensures that there are
proper transitions between states and their various successors available. The chance that parts of the state space are not
sufficiently connected is reduced. Hence, an MLP has less possibilities to approximate functions, which would shrink the
length of ∆(k)

π (W) to zero without becoming close to Vπ .

From a theoretical perspective, one would expect a better performance when switching to multistep methods. This
expectation is supported by the empirical behaviour of existing algorithms. When using k-step returns Tk

π for training, e.g.
as done in [Mnih et al., 2016], or when employing full TD(λ)-like methods as in [Schulman et al., 2016, 2017], one obtains
well performing algorithms. Multiple steps can compensate the convergence issues of Semi-Gradient algorithms, which
exist due to the missing derivates of the MLP for successor states with respect to the parameters. Because expressions
receive higher powers of the discount factor, they have less impact. If the lookahead becomes large, the terms vanish
naturally such that omitted dependencies no longer cause any harm. Opposed to that, we observe that a Gauss Newton
Residual Gradient algorithm converges already without problems with only single-step lookahead. Hence, we argue
that a beneficial impact of multistep-lookahead depends directly on the algorithm and problem at hand. To clarify our
considerations, we compare first order and Hessian based descent algorithms and test, whether different values for k
create a meaningful difference.

3 Experiments

We use the Mountain Car environment from [Brockman et al., 2016] with additional transitions from the goal region to the
valley to obtain an infinite horizon MDP. Training is performed in a batch setting with both a GN and first order only RG
algorithm. For the first, we use a constant learning rate α = 0.1, for the latter α = 0.01. Start states are sampled uniformly
from the whole space. We use N = 300 samples for training. Additional states, which are arranged on a grid with a high
resolution (500× 500), serve as test dataset. For representing value functions, we take an MLP consisting of two hidden
layers with ten units each and employ Bent-Id activation functions. The input layer accepts two dimensional state vectors.
The output is scalar with linear activation. Initial parameters are drawn elementwise uniformly from the interval [−1, 1].
We set the discount factor to γ = 0.99 and the policy for evaluation to accelerating in the direction of movement. For the
lookahead we consider k ∈ {1, 2, 3, 4, 5}. We show results for 25 repetitions, where we randomise the training data and
initial network parameters in each run.

When visualising the descent behaviour in Fig. 1, we observe a missing impact of T(k)
π with increasing k for GN based

optimisation. Using multiple transitions during training does not help with convergence. Opposed to that, when training
with a first order only RG algorithm, the convergence speed can be enhanced significantly by varying k. The well-known
slow convergence of RG algorithms for k = 1 vanishes with larger values. For both first order and Hessian based
optimisation, a stepwise larger k results in worse final training errors. This could be explained by the fact that an MLP
with identical capacity must fit a more complex objective.
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Figure 1: The impact of multistep lookahead onto first order and Hessian based RG algorithms. Only first order
optimisation profits from larger k. For both methods, the final achieved training error increases slightly with bigger k.
Top: First order optimisation. Bottom: Gauss Newton algorithm.

To compare training outcomes fairly, we evaluate the MLP at the end of training with the held out test set. Figs. 2a and 2b
show the final test errors for all k for both optimisation methods. We see, that the average test error increases with k for
first order gradient descent, implying that the solutions become worse. This matches the increase of training errors. For
Hessian based optimisation, we observe a similar rise, but not as pronounced. Interestingly, the best approximated value
function for k = 5, which is shown in Fig. 2f, possesses a qualitatively better shape despite a higher test error than the
best value function for k = 1 in Fig. 2e. The value functions for first order optimisation are for all k almost identical to
that of Fig. 2d and do not reflect the details of the actual value function Vπ , which is obtained from Monte Carlo methods
and shown in Fig. 2c. We conclude that using a test dataset is not a perfect reliable assessment. This could be due to the
aforementioned open problems regarding the objective of Eq. (7) and its critical point condition.

4 Conclusion

We have seen that the compatibility of multistep lookahead formulations is not given when employing Gauss Newton
Residual Gradient algorithms. Although we can demonstrate the beneficial impact of multiple steps on a first order
only Residual Gradient algorithm and we also see that a Hessian based optimisation performs well when using single
transitions, their combination does not lead to an even more impressive algorithm. Since this happens in relatively
easy control problems, our experiments suggest that a proper formulation of the optimisation problem is mandatory
and, unfortunately, to some extent still an unsolved problem. There are open questions about the critical points of the
objective, in particular when using sampling based approximations, and it is not known, whether this loss is suited for
Deep Reinforcement Learning with Residual Gradient algorithms. Furthermore, a sound performance evaluation is also a
challenge on its own.

Our results show that whenever one is restricted to first order only optimisation, it is important to use multistep methods
to overcome the slow convergence of Residual Gradient algorithms. If the quality of the solution is more important, one
should use Hessian information, at least in an approximated form. The final NMSBE is significantly smaller, convergence
is fast and one only requires transition data consisting of a single step.

In this work, we have analysed a compound Bellman operator with uniform averaging. Hence, as a next step, it is
important to know, whether also TD(λ) methods show this incompatibility.
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(c) Vπ obtained from rollouts.
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(d) Gradient only with k = 5
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(e) Hessian based with k = 1
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Figure 2: a) and b): Final test errors for first and second order optimisation. c) to f): Ground truth value function and the
best approximations according to the smallest test errors.
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