Benutzer: Gast  Login
Titel:

An Interpretable Lane Change Detector Algorithm based on Deep Autoencoder Anomaly Detection

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Oliver De Candido; Maximilian Binder; Wolfgang Utschick
Abstract:
In this paper, we address the challenge of employing Machine Learning (ML) algorithms in safety critical driving functions. Despite ML algorithms demonstrating good performance in various driving tasks, e.g., detecting when other vehicles are going to change lanes, the challenge of validating these methods has been neglected. To this end, we introduce an interpretable Lane Change Detector (LCD) algorithm which takes advantage of the performance of modern ML-based anomaly detection methods. We in...     »
Kongress- / Buchtitel:
The 32nd IEEE Intelligent Vehicles Symposium
Jahr:
2021
Jahr / Monat:
2021-07
TUM Einrichtung:
Professur für Methoden der Signalverarbeitung
Format:
text
Eingabe:
28.05.2021
 BibTeX