Benutzer: Gast  Login
Titel:

Koopman-Equivariant Gaussian Processes

Dokumenttyp:
Report / Forschungsbericht
Autor(en):
Petar Bevanda, Max Beier, Alexandre Capone, Stefan Sosnowski, Sandra Hirche, Armin Lederer
Abstract:
Credible forecasting and representation learning of dynamical systems are of ever-increasing importance for reliable decision-making. To that end, we propose a family of Gaussian processes (GP) for dynamical systems with linear time-invariant responses, which are nonlinear only in initial conditions. This linearity allows us to tractably quantify forecasting and representational uncertainty, simultaneously alleviating the challenge of computing the distribution of trajectories from a GP-based dy...     »
Stichworte:
Gaussian Processes; relAI; coman
Beauftragende Einrichtung:
TUM, Lehrstuhl für Informationstechnische Regelung (ITR)
Jahr:
2024
Sprache:
en
WWW:
https://doi.org/10.48550/arXiv.2502.06645
Hinweise:
Accepted to AISTATS 2025
 BibTeX