Benutzer: Gast  Login
Titel:

Outlier Detection using Self-Organizing Maps for Automated Blood Cell Analysis

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Röhrl, Stefan; Hein, Alice; Huang, Lucie; Heim, Dominik; Klenk, Christian; Lengl, Manuel; Knopp, Martin; Hafez, Nawal; Hayden, Oliver; Diepold, Klaus
Abstract:
The quality of datasets plays a crucial role in the successful training and deployment of deep learning models. Especially in the medical field, where system performance may impact the health of patients, clean datasets are a safety requirement for reliable predictions. Therefore, outlier detection is an essential process when building autonomous clinical decision systems. In this work, we assess the suitability of Self-Organizing Maps for outlier detection specifically on a medical dataset cont...     »
Dewey-Dezimalklassifikation:
610 Medizin und Gesundheit
Kongress- / Buchtitel:
Interpretable Machine Learning in Healthcare Workshop, ICML 2022
Datum der Konferenz:
23.07.2022
Jahr:
2022
Quartal:
3. Quartal
Jahr / Monat:
2022-07
Monat:
Jul
Seiten:
5
WWW:
https://arxiv.org/abs/2208.08834
TUM Einrichtung:
Lehrstuhl für Datenverarbeitung
 BibTeX