This paper presents a small-gain theorem for networks composed of a countably infinite number of finite-dimensional subsystems. Assuming that each subsystem is exponentially input-to-state stable, we show that if the gain operator, collecting all the information about the internal Lyapunov gains, has a spectral radius less than one, the overall infinite network is exponentially input-to-state stable. The effectiveness of our result is illustrated through several examples including nonlinear spatially invariant systems with sector nonlinearities and a road traffic network.
«
This paper presents a small-gain theorem for networks composed of a countably infinite number of finite-dimensional subsystems. Assuming that each subsystem is exponentially input-to-state stable, we show that if the gain operator, collecting all the information about the internal Lyapunov gains, has a spectral radius less than one, the overall infinite network is exponentially input-to-state stable. The effectiveness of our result is illustrated through several examples including nonlinear spat...
»