Reachability analysis fails to produce tight reachable sets if certain algorithm parameters are poorly tuned, such as the time step size or the accuracy of the set representation. The tuning is especially difficult in the context of nonlinear systems where over-approximation errors accumulate over time due to the so-called wrapping effect, often requiring expert knowledge. In order to widen the applicability of reachability analysis for practitioners, we propose the first adaptive parameter tuning approach for
reachability analysis of nonlinear continuous systems tuning all algorithm parameters.
Our modular approach can be applied to different
reachability algorithms as well as various set representations.
Finally, an evaluation on numerous benchmark systems shows that the
adaptive parameter tuning approach efficiently computes very tight enclosures of reachable sets.
«
Reachability analysis fails to produce tight reachable sets if certain algorithm parameters are poorly tuned, such as the time step size or the accuracy of the set representation. The tuning is especially difficult in the context of nonlinear systems where over-approximation errors accumulate over time due to the so-called wrapping effect, often requiring expert knowledge. In order to widen the applicability of reachability analysis for practitioners, we propose the first adaptive parameter tuni...
»