Content Delivery Networks aim at delivering the desired content to each user at minimum delay and cost. To tackle this problem, the content placement problem considering available cache locations has been widely studied. However, this paper addresses this problem by taking advantage of using existing but still underused Wi-Fi links. Our study considers to cache content in user homes and sharing it among neighbours via Wi-Fi links. To maximizee energy savings and reduce delays, content should be intelligently placed at the caches distributed in different users' homes. We propose using a `game theoretic centrality' metric, which models the sharing of content among neighbours as a co-operative coalition game. We apply this metric to study the energy savings and evaluate how close the contents are placed to the interested user(s).
«
Content Delivery Networks aim at delivering the desired content to each user at minimum delay and cost. To tackle this problem, the content placement problem considering available cache locations has been widely studied. However, this paper addresses this problem by taking advantage of using existing but still underused Wi-Fi links. Our study considers to cache content in user homes and sharing it among neighbours via Wi-Fi links. To maximizee energy savings and reduce delays, content should be...
»