Benutzer: Gast  Login
Titel:

Large Process Models: A Vision for Business Process Management in the Age of Generative AI

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Kampik, Timotheus; Warmuth, Christian; Rebmann, Adrian; Agam, Ron; Egger, Lukas N. P.; Gerber, Andreas; Hoffart, Johannes; Kolk, Jonas; Herzig, Philipp; Decker, Gero; van der Aa, Han; Polyvyanyy, Artem; Rinderle-Ma, Stefanie; Weber, Ingo; Weidlich, Matthias
Abstract:
The continued success of Large Language Models (LLMs) and other generative artificial intelligence approaches highlights the advantages that large information corpora can have over rigidly defined symbolic models, but also serves as a proof-point of the challenges that purely statistics-based approaches have in terms of safety and trustworthiness. As a framework for contextualizing the potential, as well as the limitations of LLMs and other foundation model-based technologies, we propose the con...     »
Stichworte:
Artificial Intelligence, Business process management, Large language models, Generative artificial intelligence
Zeitschriftentitel:
KI - Künstliche Intelligenz
Jahr:
2024
Monat:
July
Sprache:
en
Volltext / DOI:
doi:10.1007/s13218-024-00863-8
WWW:
https://doi.org/10.1007/s13218-024-00863-8
Print-ISSN:
1610-1987
 BibTeX