Two exemplary applications from the field of acoustic and ultrasonic transducers are used to demonstrate how system models can be derived using a generic thermodynamic framework in a way that they are optimally adapted to the problem in terms of their level of abstraction. The models are formulated as generalized Kirchhoff networks and are physics-based, so that relevant design parameters are accessible at system level. First, the flexibility of the method w.r.t. true to detail modeling is shown for the case of a silicon microphone. Second, the efficiency of the approach is demonstrated by an automated optimization example of a system consisting of an ultrasonic transducer coupled to an acoustic horn. In future perspective, this methodology shows the potential to become the basis for a uniform and comprehensive platform towards microsystem design and optimization that can be modularly and flexibly adapted to new problems and requirements.
«
Two exemplary applications from the field of acoustic and ultrasonic transducers are used to demonstrate how system models can be derived using a generic thermodynamic framework in a way that they are optimally adapted to the problem in terms of their level of abstraction. The models are formulated as generalized Kirchhoff networks and are physics-based, so that relevant design parameters are accessible at system level. First, the flexibility of the method w.r.t. true to detail modeling is shown...
»