User: Guest  Login
Title:

High-dimensional sparse vine copula regression with application to genomic prediction

Document type:
Zeitschriftenaufsatz
Author(s):
Sahin, Özge; Czado, Claudia
Abstract:
High-dimensional data sets are often available in genome-enabled predictions. Such data sets include nonlinear relationships with complex dependence structures. For such situations, vine copula-based (quantile) regression is an important tool. However, the current vine copula-based regression approaches do not scale up to high and ultra-high dimensions. To perform high-dimensional sparse vine copula-based regression, we propose 2 methods. First, we show their superiority regarding computational...     »
Keywords:
genomic prediction, high-dimensional data, quantile regression, variable selection, vine copula
Dewey Decimal Classification:
510 Mathematik
Journal title:
Biometrics
Year:
2024
Journal volume:
80
Year / month:
2024-03
Quarter:
1. Quartal
Month:
Mar
Journal issue:
1
Language:
en
Fulltext / DOI:
doi:10.1093/biomtc/ujad042
Publisher:
Oxford University Press (OUP)
E-ISSN:
0006-341X1541-0420
Date of publication:
01.03.2024
Semester:
WS 23-24
TUM Institution:
Professur für Angewandte Mathematische Statistik
Format:
Text
 BibTeX