Benutzer: Gast  Login
Titel:

High-dimensional sparse vine copula regression with application to genomic prediction

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Sahin, Özge; Czado, Claudia
Abstract:
High-dimensional data sets are often available in genome-enabled predictions. Such data sets include nonlinear relationships with complex dependence structures. For such situations, vine copula-based (quantile) regression is an important tool. However, the current vine copula-based regression approaches do not scale up to high and ultra-high dimensions. To perform high-dimensional sparse vine copula-based regression, we propose 2 methods. First, we show their superiority regarding computational...     »
Stichworte:
genomic prediction, high-dimensional data, quantile regression, variable selection, vine copula
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Biometrics
Jahr:
2024
Band / Volume:
80
Jahr / Monat:
2024-03
Quartal:
1. Quartal
Monat:
Mar
Heft / Issue:
1
Sprache:
en
Volltext / DOI:
doi:10.1093/biomtc/ujad042
Verlag / Institution:
Oxford University Press (OUP)
E-ISSN:
0006-341X1541-0420
Publikationsdatum:
01.03.2024
Semester:
WS 23-24
TUM Einrichtung:
Professur für Angewandte Mathematische Statistik
Format:
Text
 BibTeX