Benutzer: Gast  Login
Titel:

Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Strieder, David; Drton, Mathias
Seitenangaben Beitrag:
213-230
Abstract:
A fundamental challenge of scientific research is inferring causal relations based on observed data. One commonly used approach involves utilizing structural causal models that postulate noisy functional relations among interacting variables. A directed graph naturally represents these models and reflects the underlying causal structure. However, classical identifiability results suggest that, without conducting additional experiments, this causal graph can only be identified up to a Markov equi...     »
Dewey-Dezimalklassifikation:
510 Mathematik
Herausgeber:
Johan Kwisthout, Silja Renooij
Kongress- / Buchtitel:
Proceedings of Machine Learning Research
Kongress / Zusatzinformationen:
Proceedings of The 12th International Conference on Probabilistic Graphical Models
Band / Teilband / Volume:
246
Datum der Konferenz:
Sep 11, 2024 - Sep 13, 2024
Verlag / Institution:
ML Research Press
Publikationsdatum:
10.09.2024
Jahr:
2024
Quartal:
3. Quartal
Jahr / Monat:
2024-09
Monat:
Sep
Seiten:
542
Print-ISBN:
2640-3498
E-ISBN:
1938-7228
Sprache:
en
Erscheinungsform:
WWW
WWW:
Proceedings of Machine Learning Research
Semester:
SS 24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX