Benutzer: Gast  Login
Titel:

Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Liang, Yurou; Zadorozhnyi, Oleksandr; Drton, Mathias
Seitenangaben Beitrag:
253-272
Abstract:
Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model. This model selection problem can be challenging due to its large combinatorial search space, particularly when dealing with non-parametric causal models. Recent research has sought to bypass the combinatorial search by reformulating causal discovery as a continuous optimization problem, employing constraints that ensure the acyclicity of the graph. In non-parametric settings, existing approaches typi...     »
Dewey-Dezimalklassifikation:
510 Mathematik
Herausgeber:
Johan Kwisthout, Silja Renooij
Kongress- / Buchtitel:
Proceedings of Machine Learning Research
Kongress / Zusatzinformationen:
Proceedings of The 12th International Conference on Probabilistic Graphical Models
Band / Teilband / Volume:
246
Datum der Konferenz:
Sep 11, 2024 - Sep 13, 2024
Verlag / Institution:
ML Research Press
Publikationsdatum:
10.09.2024
Jahr:
2024
Quartal:
3. Quartal
Jahr / Monat:
2024-09
Monat:
Sep
Seiten:
542
Print-ISBN:
2640-3498
E-ISBN:
1938-7228
Sprache:
en
Erscheinungsform:
WWW
WWW:
Proceedings of Machine Learning Research
Semester:
SS 24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX