Benutzer: Gast  Login
Titel:

Bounds in the Lee metric and optimal codes

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Byrne, Eimear; Weger, Violetta
Abstract:
In this paper we investigate known Singleton-like bounds in the Lee metric and characterize their extremal codes, which turn out to be very few. We then focus on Plotkin-like bounds in the Lee metric and present a new bound that extends and refines a previously known, and out-performs it in the case of non-free codes. We then compute the density of extremal codes with regard to the new bound. Finally we fill a gap in the characterization of Lee-equidistant codes.
Stichworte:
Ring-linear codeLee distanceMaximum Lee distanceBoundsConstant weight codes
Dewey Dezimalklassifikation:
510 Mathematik
Horizon 2020:
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 899987.
Zeitschriftentitel:
Finite Fields and Their Applications
Jahr:
2023
Band / Volume:
87
Seitenangaben Beitrag:
102151
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1016/j.ffa.2022.102151
WWW:
https://www.sciencedirect.com/science/article/abs/pii/S1071579722001605?dgcid=coauthor
Verlag / Institution:
Elsevier BV
E-ISSN:
1071-5797
Status:
Verlagsversion / published
Publikationsdatum:
01.03.2023
 BibTeX