The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter case, however, the control concept is mainly represented by using merely positive rules, e.g., “If A then do B”. As this is not straightforward with respect to the semantics of the human decision-making process that also includes negative experience in form of constraints or prohibitions, the incorporation of negative rules for process control based on fuzzy logic is emphasized. In this work, an approach of fuzzy logic control of the yeast propagation process based on a combination of positive and negative rules is presented. The process is guided along a reference trajectory for yeast cell concentration by alternating the process temperature. The incorporation of negative rules leads to a much more stable and accurate control of the process as the root mean squared error of reference trajectory and system response could be reduced by an average of 62.8 % compared to the controller using only positive rules.
«
The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter cas...
»