Benutzer: Gast  Login
Titel:

Learning Linear Gaussian Polytree Models With Interventions

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Tramontano, Daniele; Waldmann, Leonard; Drton, Mathias; Duarte, Eliana .
Abstract:
We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dime...     »
Stichworte:
Causal discovery, interventions, linear structural equation model, polytrees
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
IEEE Journal on Selected Areas in Information Theory
Jahr:
2023
Band / Volume:
4
Jahr / Monat:
2023-10
Quartal:
4. Quartal
Monat:
Oct
Seitenangaben Beitrag:
569-578
Sprache:
en
Volltext / DOI:
doi:10.1109/jsait.2023.3328429
WWW:
IEEE Xplore
Verlag / Institution:
Institute of Electrical and Electronics Engineers (IEEE)
Print-ISSN:
2641-8770
E-ISSN:
2641-8770
Status:
Verlagsversion / published
Publikationsdatum:
01.10.2023
Semester:
WS 23-24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX