Benutzer: Gast  Login
Titel:

Adaptive tracking control with uncertaintyaware and state-dependent feedback action blending for robot manipulators.

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Wu, X.; Kirner, A.; Garofalo, G.; Ott, C.; Kotyczka, P.; Dietrich, A.
Abstract:
Adaptive control can significantly improve tracking performance of robot manipulators subject to modeling errors in dynamics. In this letter, we propose a new framework combining the composite adaptive controller using a natural adaptation law and an extension of the adaptive variance algorithm (AVA) for controller blending. The proposed approach not only automatically adjusts the feedback action to reduce the risk of violating actuator constraints but also anticipates substantial modeling error...     »
Stichworte:
Adaptive control; motion control; automatic feedback action blending; unsertainty measure
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
IEEE Robotics and Automation Letters
Jahr:
2022
Jahr / Monat:
2022-10
Quartal:
4. Quartal
Monat:
Oct
Heft / Issue:
Vol. 7, Issue 4
Seitenangaben Beitrag:
pp. 12307-12314
Nachgewiesen in:
Scopus
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1109/LRA.2022.3212669
WWW:
https://ieeexplore.ieee.org/document/9913624/
Verlag / Institution:
IEEE
Publikationsdatum:
10.10.2022
TUM Einrichtung:
Lehrstuhl für Regelungstechnik
 BibTeX