User: Guest  Login
Title:

Interpretable Machine Learning for Ionosphere Forecasting with Uncertainty Quantification

Document type:
Konferenzbeitrag
Contribution type:
Vortrag / Präsentation
Author(s):
Natras R., Soja B., Schmidt M.
Abstract:
The ionosphere, the ionized upper Earth´s atmosphere, affects the radio wave propagation and consequently, can degrade the performance and reliability of GNSS positioning. To minimize these degradations, ionospheric effects need to be precisely and timely corrected by providing information of the spatially and temporally variable Total Electron Content (TEC). This requires nonlinear modeling of the ionosphere and the associated space weather effects. Such nonlinear relationships can be approxima...     »
Keywords:
GNSS-derived VTEC, Ionosphere, Machine Learning, Interpretability, Uncertainty quantification
Book / Congress title:
D4G: 1st Workshop on Data Science for GNSS Remote Sensing
Congress (additional information):
GFZ German Research Centre for Geosciences
Date of congress:
2022-06-13 - 2022-06-15
Year:
2022
Year / month:
2022-06
WWW:
http://www.d4g-2022.de/assets/natras_randa_interpretable_machine_learning.pdf
TUM Institution:
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
 BibTeX