Benutzer: Gast  Login
Titel:

Interpretable Machine Learning for Ionosphere Forecasting with Uncertainty Quantification

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Vortrag / Präsentation
Autor(en):
Natras R., Soja B., Schmidt M.
Abstract:
The ionosphere, the ionized upper Earth´s atmosphere, affects the radio wave propagation and consequently, can degrade the performance and reliability of GNSS positioning. To minimize these degradations, ionospheric effects need to be precisely and timely corrected by providing information of the spatially and temporally variable Total Electron Content (TEC). This requires nonlinear modeling of the ionosphere and the associated space weather effects. Such nonlinear relationships can be approxima...     »
Stichworte:
GNSS-derived VTEC, Ionosphere, Machine Learning, Interpretability, Uncertainty quantification
Kongress- / Buchtitel:
D4G: 1st Workshop on Data Science for GNSS Remote Sensing
Kongress / Zusatzinformationen:
GFZ German Research Centre for Geosciences
Datum der Konferenz:
2022-06-13 - 2022-06-15
Jahr:
2022
Jahr / Monat:
2022-06
WWW:
http://www.d4g-2022.de/assets/natras_randa_interpretable_machine_learning.pdf
TUM Einrichtung:
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
 BibTeX