Sustainable and efficient energy use in agriculture helps tackle climate change by reducing fossil energy use. We evaluated German farming systems by analysing energy input and output. Data from 30 organic and 30 conventional farms (12 arable, 18 dairy farms each) between 2009 and 2011 was used. Energy input, output, and the influence of farm type, farm structure, and management intensity on energy-use efficiency (EUE) were analysed for crop production using the farm management system REPRO. Conventional farms (CF) always had higher energy input. The energy input for organic farms (OF) was 7.2 GJ ha−1 and for CF 14.0 GJ ha−1. The energy output of CF was also higher. Reductions were higher in energy input than in energy output. In 73.3% of the farm pairs, OF were more energy efficient than CF. The EUE was comparable with CF on 10% of OF and for 16.7% of CF the EUE was higher suggesting better fossil energy utilization. EUE can be increased when reducing fossil energy inputs through more efficient machinery, reduction of agrochemicals, precision farming, the use of renewable energy or energy retention, and by increasing yields. A reduction of inputs is urgently required to lower the (political) dependence on fossil energy. © 2024, The Author(s).
«
Sustainable and efficient energy use in agriculture helps tackle climate change by reducing fossil energy use. We evaluated German farming systems by analysing energy input and output. Data from 30 organic and 30 conventional farms (12 arable, 18 dairy farms each) between 2009 and 2011 was used. Energy input, output, and the influence of farm type, farm structure, and management intensity on energy-use efficiency (EUE) were analysed for crop production using the farm management system REPRO. Con...
»