Benutzer: Gast  Login
Titel:

IoT-Based Data Mining Framework for Stability Assessment of the Laser-Directed Energy Deposition Process

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Hartmann, Sebastian; Vykhtar, Bohdan; Möbs, Nele; Kelbassa, Ingomar; Mayr, Peter
Abstract:
Additive manufacturing processes are prone to production errors. Specifically, the unique physical conditions of Laser-Directed Energy Deposition (DED-L) lead to unexpected process anomalies resulting in subpar part quality. The resulting costs and lack of reproducibility are two major barriers hindering a broader adoption of this innovative technology. Combining sensor data with data from relevant steps before and after the production process can lead to an increased understanding of when and w...     »
Stichworte:
Industry 4.0; process monitoring; edge computing; sensors; digital twin; additive manufacturing; directed energy deposition; laser metal deposition
Zeitschriftentitel:
Processes
Jahr:
2024
Band / Volume:
12
Jahr / Monat:
2024-06
Heft / Issue:
6
Seitenangaben Beitrag:
1180
Nachgewiesen in:
Scopus
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.3390/pr12061180
WWW:
https://doi.org/10.3390/pr12061180
Verlag / Institution:
MDPI AG
E-ISSN:
2227-9717
Eingereicht (bei Zeitschrift):
19.05.2024
Angenommen (von Zeitschrift):
04.06.2024
Publikationsdatum:
07.06.2024
 BibTeX